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Abstract

For a given second-order ordinary differential equation (ODE), several
relationships among first integrals, integrating factors and λ-symmetries are
studied. The knowledge of a λ-symmetry of the equation permits the
determination of an integrating factor or a first integral by means of coupled
first-order linear systems of partial differential equations. If two nonequivalent
λ-symmetries of the equation are known, then an algorithm to find two
functionally independent first integrals is provided. These methods include
and complete other methods to find integrating factors or first integrals that are
based on variational derivatives or in the Prelle–Singer method. These results
are applied to several ODEs that appear in the study of relevant equations of
mathematical physics.

PACS number: 02.30.Hq
Mathematics Subject Classification: 34A05

1. Introduction

First integrals and integrating factors play a central role in the study of ordinary differential
equations (ODEs). In fact, finding a first integral of a given ODE is equivalent to obtaining an
integrating factor of the equation. Several authors have obtained necessary and sufficient
conditions for a function μ(x, u, u̇) to be an integrating factor of a second-order ODE
ü = φ(x, u, u̇). Most of their approaches rest on the fact that the function μ(ü−φ(x, u, u̇)) is
a total derivative and therefore its variational derivative is null. As a consequence integrating
factors can be determined as solutions of a second-order linear system of PDEs [1–4]. Since
solving this system is usually a more difficult task than solving the original ODE, many studies
have been done to investigate special classes of integrating factors, through specific ans ′′

atze
for μ [2, 5]. In [6] and [2] integrating factors appear as the solutions of the adjoint equation
of the linearized equation and an additional equation that describes an extra adjoint-invariance
condition.

1751-8113/09/365207+17$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/36/365207
http://stacks.iop.org/JPhysA/42/365207


J. Phys. A: Math. Theor. 42 (2009) 365207 C Muriel and J L Romero

Integrating factors have also been connected with the symmetries of the ODE. For a first-
order ODE, Lie’s symmetry reduction yields the quadrature of the equation. Lie also showed
that this is equivalent to finding a first integral and the corresponding integrating factor of the
ODE. However, the equivalence between integrating factors and Lie point symmetries fails
for higher-order equations, because there exist exact equations without Lie point symmetries
[7, 8].

The integrability of equations that lack Lie point symmetries has been considered by
several authors: nonlocal symmetries and hidden symmetries hold important roles in these
studies [9–11]. However, the main problem associated with nonlocal symmetries is how to
determine them. Although no general method to calculate them has been derived, several
strategies can be followed in some cases [12]. A route to the determination of some nonlocal
symmetries necessary to the complete specification of some nonlinear 1+1 evolution equations
has been designed by Myeni and Leach [13, 14].

Many of these nonlocal or hidden symmetries can be connected with λ-symmetries
(also called C∞-symmetries) [15]. These λ-symmetries can be calculated by a well-defined
algorithm, include Lie point symmetries as a very specific subclass, and have an associated
order reduction procedure, somehow similar to the classical Lie method of reduction [16].
Although λ-symmetries are not Lie point symmetries, the unique prolongations of vector
fields (in the space (x, u)) to the space of variables (x, u, . . . , un)) for which the Lie reduction
method applies are always λ-prolongations, for some functions λ(x, u, u̇). This result has been
proved by the authors [17] and is implicit in the work of Pucci and Sacomandi on telescopic
vector fields [18]. From a geometrical point of view several studies and interpretations on
λ-symmetries have been made by several authors [19–21] including further extensions of
λ-symmetries to systems [22, 23], to PDEs [24] and to variational problems [25, 26].

In the context of integrating factors, two important facts are that any exact ODE admits a
λ-symmetry, although the equation may have no Lie point symmetries, and that a first integral
of the ODE appears in the reduction procedure associated with the λ-symmetry [27]. This
motivates us to study in depth the relationships among first integrals, integrating factors and
λ-symmetries, which is one of the aims of this paper. For simplicity we present here the results
for second-order ODEs.

This paper is organized as follows. We first prove (theorem 2) that any first integral of a
second-order ODE determines a λ-symmetry of the equation and, conversely, there is a class
of first integrals associated with any given λ-symmetry. As a consequence a procedure to
determine a first integral, when a λ-symmetry is known, is derived; only first-order ODEs are
involved in this algorithm. This method extends the results in [7] and can be applied to the
examples that appear therein; some of these examples correspond to ODEs without Lie point
symmetries.

Once it has been shown how a first integral I determines an integrating factor and a λ-
symmetry of the equation, section 3 is devoted to the study of conditions on two functions μ

and λ in order for μ to be an integrating factor or v = ∂u to be a λ-symmetry of the equation.
This is done through the study of the compatibility of a first-order system which involves the
two functions μ and λ and an unknown function I. The compatibility of the system permits
the determination of a first integral of the equation through a line integral.

In section 4 it is shown that, when a λ-symmetry of the equation is known, a class of
integrating factors of the equation can be determined as solutions of a first-order linear system
of two coupled PDEs, which could be solved by standard methods. At this point it should be
mentioned that the classical determining equations of the integrating factors of a second-order
equation constitute a system of two second-order PDEs [1, 2]. In section 6 we derive these
determining equations without using variational derivatives. As a particular case, when a Lie
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point symmetry of the equation is known, that first-order linear system can be expressed in
terms of the characteristic of the symmetry and its solutions are integrating factors of the ODE.
As far as we know, this is the first time that a direct connection between Lie point symmetries
and integrating factors is given for equations of order higher than 1. A different and more
indirect method to derive first integrals through Lie group analysis can be seen in [28].

It is well known that two independent first integrals of a second-order ODE provide the
general solution of the equation. It is natural to raise the question whether two different λ-
symmetries of the equation yield two independent first integrals. This is addressed in section 5
and an easy-to-check condition determines when two independent first integrals, associated
with these two λ-symmetries, can be found.

These results are applied to the Ermakov–Pinney equation [29]. This equation has wide
applications in several branches of physics, such as in the analysis of traveling-wave solutions
associated with Schrödinger equations, accelerator physics or the one-dimensional Vlasov–
Maxwell equations. It also arises in the moving shoreline analysis of rotating liquid motion in
a circular paraboloidal basin. The Ermakov–Pinney equation has widely been studied in the
context of symmetry analysis [30–33]. In this paper, as a direct consequence of our results,
we present a novel derivation of the nonlinear superposition principle and its relationship with
the Schrödinger equation.

In section 7 we first consider the relationship between our methods and the Prelle–Singer
method of constructing integrating factors. This was introduced in [34] for first-order ODEs,
has been adapted and applied to second-order ODEs in [35] and has been extended to nth-order
ODEs in [36]. For a second-order equation of the form ü = φ(x, u, u̇), the method tries to
add to the differential form φdx − du̇ a ghost differential form S(x, u, u̇)(u̇ dx − du) in order
for the resulting differential form to admit an integrating factor. We show that this happens if
and only if v = ∂u is a λ-symmetry of the equation for λ = −S. In fact the examples given
in [35] correspond to Lie symmetries of the equations. In this section we also consider the
relationship between our methods and the method based on variational derivatives to obtaining
integrating factors. This provides alternative proofs of some of our results.

Needless to say, examples have been chosen to illustrate easily the algorithms rather
than to obtain innovative results on the equations. However, the generality of the issues
will hopefully yield fruitful results when applied to a wide variety of physically important
equations.

2. First integrals and λ-symmetries

This paper is devoted to investigating the relationships among first integrals, integrating factors
and λ-symmetries of a given second-order ordinary differential equation

ü = φ(x, u, u̇). (1)

We denote by A = ∂x + u̇∂u + φ(x, u, u̇)∂u̇ the vector field associated with equation (1).
In terms of A a first integral of (1) is any function I (x, u, u̇) such that A(I) = 0.

An integrating factor of equation (1) is any function μ(x, u, u̇) such that

μ[ü − φ(x, u, u̇)] = DxI, (2)

for some function I (x, u, u̇), where Dx is the total derivative vector field: Dx = ∂x + u̇∂u +
ü∂u̇ + · · ·.

The relationship between first integrals and integrating factors is well known. We put this
relationship in the next theorem for further reference.
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Theorem 1.

(a) If I (x, u, u̇) is a first integral of equation (1), then μ = Iu̇ is an integrating factor of (1).
(b) Conversely, if μ(x, u, u̇) is an integrating factor of (1), then there exists a first integral

I (x, u, u̇) of (1) such that μ = Iu̇.

Proof.

(a) If AI = 0, then Ix + u̇Iu + φ(x, u, u̇)Iu̇ = 0. Therefore Ix + u̇Iu = −φ(x, u, u̇)Iu̇ and

DxI = Ix + u̇Iu + üIu̇ = −φ(x, u, u̇)Iu̇ + üIu̇ = Iu̇[ü − φ(x, u, u̇)]. (3)

(b) If μ[ü − φ(x, u, u̇)] = DxI, for some function I (x, u, u̇) then necessarily μ = Iu̇ and
−μφ = −Iu̇φ = Ix + u̇Iu. This proves that Ix + u̇Iu + φ(x, u, u̇)Iu̇ = 0, i.e., AI = 0. �

If v = ξ(x, u)∂x + η(x, u)∂u is a vector field and λ = λ(x, u, u̇) is a smooth function
on the space of variables (x, u, u̇), then the nth-order λ-prolongation v[λ,(n)] of v [16] can be
characterized as the unique vector field on the space M(n) of variables (x, u, u̇, . . . , un)) such
that

[v[λ,(n)],Dx] = λv[λ,(n)] + νDx, (4)

where ν = −(Dx + λ)(ξ) = −(A + λ)(ξ). When n = 1, the explicit form of v[λ,(1)] is

v[λ,(1)] = ξ∂x + η∂u + [(A + λ)(η) − (A + λ)(ξ)u̇]∂u̇. (5)

The vector field v is a λ-symmetry of equation (1) if and only if

[v[λ,(1)], A] = λv[λ,(1)] + νA. (6)

When v = ∂u, v is a λ-symmetry of (1) if and only if

φu + λφu̇ = A(λ) + λ2. (7)

Our next theorem establishes a first relationship between first integrals and λ-symmetries.

Theorem 2.

(a) If I (x, u, u̇) is a first integral of (1), then the vector field v = ∂u is a λ-symmetry of (1)
for λ = −Iu/Iu̇ and v[λ,(1)]I = 0.

(b) Conversely, if v = ∂u is a λ-symmetry of (1) for some function λ(x, u, u̇), then there exists
a first integral I (x, u, u̇) of (1) such that v[λ,(1)]I = 0.

Proof.

(a) Since for any function λ(x, u, u̇)v[λ,(1)] = ∂u + λ∂u̇, it is clear that

v[λ,(1)]I = Iu − Iu

Iu̇

Iu̇ = 0

when λ = −Iu/Iu̇. Since h(x, u, u̇) = x and I (x, u, u̇) are first integrals of v[λ,(1)],DxI

is an invariant of v[λ,(2)] [16]. By applying v[λ,(2)] to both members of the identity
Iu̇[ü − φ(x, u, u̇)] = DxI we obtain

Iu̇ · v[λ,(2)][ü − φ] + v[λ,(2)](Iu̇) · [ü − φ] = v[λ,(2)](DxI) = 0.

This implies that

Iu̇ · v[λ,(2)][ü − φ(x, u, u̇)] = 0 when ü = φ(x, u, u̇).

Since Iu̇ �= 0, it is clear that v = ∂u is a λ-symmetry of (1).
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(b) If v = ∂u is a λ-symmetry of (1) for some function λ(x, u, u̇), then

[v[λ,(1)], A] = λ · v[λ,(1)]. (8)

Therefore {v[λ,(1)], A} is an involutive set of vector fields in M(1) and there exists a function
I (x, u, u̇) such that v[λ,(1)]I = 0 and AI = 0. �

Theorem 2 provides us a procedure to determine a first integral of (1) when we know that
v = ∂u is a λ-symmetry for some known function λ(x, u, u̇).

Suppose that w(x, u, u̇) is a nontrivial first integral of v[λ,(1)], i.e., w(x, u, u̇) is a solution
of the first-order partial differential equation

wu + λ(x, u, u̇)wu̇ = 0 (9)

such that wu̇ �= 0. Since h(x, u, u̇) = x is obviously another first integral of v[λ,(1)], any first
integral I (x, u, u̇) of v[λ,(1)] can be written in the form

I (x, u, u̇) = G(x,w(x, u, u̇)) (10)

for some function of two variables G(x,w).
By theorem 2 we can search for a common first integral for the vector fields v[λ,(1)] and

A. We first observe that, if I (x, u, u̇) has the form given in (10), then

A(I) = Ix + u̇Iu + φ(x, u, u̇)Iu̇

= (Gx + Gwwx) + u̇(Gwwu) + φ(x, u, u̇)(Gwwu̇)

= Gx + Gw · [wx + u̇wu + φ(x, u, u̇)wu̇] = Gx + A(w) · Gw. (11)

Hence in order to find a common first integral of the vector fields v[λ,(1)] and A we must solve
the equation

Gx + A(w) · Gw = 0. (12)

In principle, equation (12) is a first-order partial differential equation in variables (x, u, u̇).
Nevertheless that equation can be considered as a first-order ordinary differential equation
because A(w) depends only on (x,w). This is a consequence of (8): since v[λ,(1)](w) = 0,
we have that v[λ,(1)](A(w)) = 0 and A(w) functionally depends on the first integrals
h(x, u, u̇) = x and w(x, u, u̇). Therefore there exists a function of two variables F(x,w) such
that A(w)(x, u, u̇) = F(x,w(x, u, u̇)) and equation (12) can be interpreted as the first-order
ordinary differential equation

Gx + F(x,w) · Gw = 0. (13)

Suppose that G = G(x,w) solves (13). Then by (10) I (x, u, u̇) = G(x,w(x, u, u̇))

satisfies A(I) = 0, i.e., I (x, u, u̇) is a first integral of (1).
In summary, if we know that ∂u is a λ-symmetry of (1) for some known function λ(x, u, u̇),

i.e., λ is a particular solution of (7), then a procedure to find a first integral I (x, u, u̇) of (1),
and consequently an integrating factor of that equation, reads as follows:

(i) Find a first integral w(x, u, u̇) of v[λ,(1)], i.e., a particular solution of the equation

wu + λ · wu̇ = 0. (14)

(ii) Evaluate A(w) and express A(w) in terms of (x,w) as A(w) = F(x,w).
(iii) Find a first integral G of ∂x + F(x,w)∂w.
(iv) Evaluate I (x, u, u̇) = G(x,w(x, u, u̇)).

Then I (x, u, u̇) is a first integral of (1) and μ(x, u, u̇) = Iu̇(x, u, u̇) is an integrating factor
of (1).

5
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3. First integrals, integrating factors and λ-symmetries: a first relationship

Theorem 2 and the former procedure work when v = ∂u is a λ-symmetry. If I is a first integral
of (1), then μ = Iu̇ is an integrating factor of (1) and −μφ = Ix + u̇Iu. If I is also a first
integral of v[λ,(1)] for some function λ(x, u, u̇), then Iu = −λIu̇ = −λμ and the system

Ix = μ(λu̇ − φ), Iu = −λμ, Iu̇ = μ, (15)

is compatible; i.e., when λ(x, u, u̇) is such that v = ∂u is a λ-symmetry, we know that system
(15) is compatible. Therefore system (15) could be used to obtain through a line integral a
first integral of (1) associated with μ.

Now we try to investigate the properties of two functions μ(x, u, u̇) and λ(x, u, u̇) which
make system (15) compatible. In this case what system (15) says is that there exists a common
integral to the vector fields A and v[λ,(1)]. We are going to prove that, when (15) is compatible,
necessarily v = ∂u is a λ-symmetry.

First we observe that, if (15) is compatible,

μx = (Iu̇)x = (Ix)u̇ = (μ(λu̇ − φ))u̇ = μu̇(λu̇ − φ) + μ(λu̇ − φ)u̇,

μu = (Iu̇)u = (Iu)u̇ = −μu̇λ − μλu̇.
(16)

By using (16) we obtain after some simplifications

Ixu = −μu̇[λ(λu̇ − φ)] − μ[λu̇(λu̇ − φ) − (λu̇ − φ)u̇],
Iux = −μu̇[λ(λu̇ − φ)] − μ[λx + λ(λu̇ − φ)u̇].

(17)

The compatibility of system (15) implies that Ixu = Iux and (17) gives us

μ[−(φu + λφu̇) + (λx + u̇λu + φλu̇ + λ2)] = 0. (18)

When μ �= 0, (18) implies that v = ∂u is a λ-symmetry. Hence we have proved the following
theorem.

Theorem 3. A system of the form (15) is compatible for some functions λ(x, u, u̇) and
μ(x, u, u̇) if and only if μ is an integrating factor of (1) and v = ∂u is a λ-symmetry of (1). In
this case I is a first integral of (1).

It must be observed that the compatibility of (15) implies that both μ and λ are uniquely
defined by μ = Iu̇ and λ = −Iu/Iu̇. In section 4 we prove that, when (λ, μ) makes (15)
compatible, λ is also uniquely defined by μ as λ = A(μ)/μ + φu̇.

4. On integrating factors and λ-symmetries

In theorem 2 we have shown that if v = ∂u is a λ-symmetry of (1), there exists a common first
integral of the vector fields v[λ,(1)] and A, i.e., the following system is compatible:

Iu + λ(x, u, u̇)Iu̇ = 0, Ix + u̇Iu + φ(x, u, u̇)Iu̇ = 0. (19)

By differentiation with respect to u̇ we obtain

Iuu̇ + λu̇Iu̇ + λIu̇u̇ = 0, Ixu̇ + Iu + u̇Iu̇u + φu̇Iu̇ + φIu̇u̇ = 0. (20)

If we set μ = Iu̇, the first equation in (19) implies that Iu = −λμ and system (20) can be
written in terms of μ as

μu + λμu̇ + λu̇μ = 0, A(μ) + (φu̇ − λ)μ = 0. (21)

Therefore, if v = ∂u is a λ-symmetry of (1), (21) is compatible and necessarily

λ = A(μ)

μ
+ φu̇. (22)
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The first equation in (21) can be written, without any dependence on λ, as

μu + [A(μ) + μφu̇]u̇ = 0. (23)

We now suppose that μ is any solution of (23) and that λ is defined by (22). Then

(i) μ is not necessarily an integrating factor of (1).
(ii) v = ∂u is not necessarily a λ-symmetry of (1).

This can be shown through the following example:

Example 4. Let us consider an equation of the form

ü = φ(x, u). (24)

It is clear that, if μ = μ(x), then μ is a solution of equation (23) and

λ = A(μ)

μ
+ φu̇ = μ̇(x)

μ(x)
. (25)

For most equations μ(x) is not an integrating factor of (24) and λ(x) = μ̇(x)/μ(x) is not a
λ-symmetry of (24).

If one assumes that μ is a solution of (23) and λ is defined by (22), this raises the following
questions:

(A) If λ is such that v = ∂u is a λ-symmetry of (1), is μ an integrating factor of (1)?
(B) If μ is an integrating factor of (1), is v = ∂u a λ-symmetry of (1)?

To answer question A it is enough to prove that, when μ is a solution of (23), the
corresponding system (15) is compatible. By using (22), (23) and the third equation in (15)

(Iu)u̇ = −(λμ)u̇ = −[A(μ) + μφu̇]u̇ = μu = (Iu̇)u. (26)

By using (26) we also have

(Ix)u̇ = [(λμ)u̇ − μφ]u̇ = (λμ)u̇u̇ + (λμ) − μu̇φ − μφu̇

= −(Iu)u̇u̇ + (λμ) − μu̇φ − μφu̇

= −μx − u̇μu − φμu̇ − μφu̇ + μx + (λμ)

= −[A(μ) + μφu̇] + μx + (λμ)

= −[A(μ) + μφu̇] + μx + [A(μ) + μφu̇] = μx = (Iu̇)x. (27)

It can be proven that (Ix)u and (Iu)x are given by (17). These second-order derivatives
are identical because we assume that v = ∂u is a λ-symmetry of (1) and (18) holds.

Therefore the answer to question A is positive.
To answer question B we now suppose that μ is an integrating factor of (1). By theorem 1

we know that there exists a first integral J of (1) such that μ(ü − φ) = DxJ. This equation
implies that

Ju̇ = μ, (28)

−μφ = Jx + u̇Ju. (29)

By differentiation of both members of (29) with respect to u̇ and by using (28) we obtain

−μu̇φ − μφu̇ = Jxu̇ + Ju + u̇Juu̇ = μx + u̇μu + Ju.

Therefore by (22),

Ju = −[μx + u̇μu + φμu̇ − μφu̇] = −[A(μ) + μφu̇] = −λμ. (30)

7
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By using (28) and (30) we finally obtain that

Jx = −μφ − u̇Ju = −μφ − u̇(−λμ) = μ(λu̇ − φ). (31)

Equations (28), (30) and (31) prove that J is a solution of system (15) and this system is
compatible. By theorem 3 v = ∂u is a λ-symmetry of (1). Thus we have proved the following
theorem:

Theorem 5. A function μ(x, u, u̇) is an integrating factor of (1) if and only if μ is a solution
of (23) and λ = A(μ)/μ + φu̇ is such that v = ∂u is a λ-symmetry of (1).

We now suppose that λ(x, u, u̇) is such that v = ∂u is a λ-symmetry of (1). If μ(x, u, u̇) is
such that λ = A(μ)/μ + φu̇, then theorem 5 ensures that, if μ satisfies (23), μ is an integrating
factor of (1). Therefore we have obtained the following corollary.

Corollary 6. If λ(x, u, u̇) is such that v = ∂u is a λ-symmetry of (1) then any solution μ of
the first-order linear system

A(μ) + (φu̇ − λ)μ = 0, μu + (λμ)u̇ = 0 (32)

is an integrating factor of (1).

We now consider the relationship between integrating factors and Lie symmetries.
Suppose that v = ξ∂x + η∂u is a Lie point symmetry of (1). The first prolongation v(1)

of v is v(1) = ξ∂x + η∂u + η(1)∂u̇ where η(1) = Dxη − (Dxξ)u̇. Since ξ and η do not depend
upon u̇, we can also write η(1) = A(η) − A(ξ)u̇ = A(η − ξ u̇) + ξφ. Therefore,

v(1) = ξ∂x + η∂u + A(η − ξ u̇)∂u̇ + ξφ∂u̇

= (η − ξ u̇)∂u + A(η − ξ u̇)∂u̇ + ξ [∂x + u̇∂u + φ∂u̇]

= v
(1)
Q + ξ · A, (33)

where Q = η − ξ u̇ is the characteristic of v and

v
(1)
Q = Q∂u + A(Q)∂u̇. (34)

Since v is a Lie point symmetry of (1), we have [v(1), A] = −A(ξ)A. By using (33) we can
write

−A(ξ)A = [v(1), A] = [
v

(1)
Q + ξA,A

] = [
v

(1)
Q ,A

] − A(ξ)A. (35)

Therefore [v(1)
Q ,A] = 0 and[(

1

Q
v

(1)
Q

)
, A

]
= −A

(
1

Q

)
v

(1)
Q =

(
A(Q)

Q

)
·
(

1

Q
v

(1)
Q

)
= λ ·

(
1

Q
v

(1)
Q

)
, (36)

where λ = A(Q)/Q. If we denote v̄ = ∂u, equation (36) proves that v̄ is a λ-symmetry of (1).
As a consequence of Corollary 6 we have the following theorem.

Theorem 7. If v is a Lie point symmetry of (1) and Q is its characteristic, then v̄ = ∂u is a
λ-symmetry of (1) for λ = A(Q)/Q and any solution of the first-order linear system

A(μ) +

(
φu̇ − A(Q)

Q

)
μ = 0, μu +

(
A(Q)

Q
μ

)
u̇

= 0 (37)

is an integrating factor of (1).

Example 8. Consider the second-order equation [37]

2uü − 6u̇2 + u5 + u2 = 0. (38)

8
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It is clear that v = ∂x is a Lie point symmetry of (38). It can be checked that this is the unique
Lie point symmetry of (38).

The vector field associated with (38) is

A = ∂x + u̇∂u +
1

2

(
6u̇2

u
− u4 − u

)
∂u̇ (39)

and the characteristic of v is Q = −u̇. The corresponding second equation of (37) becomes

μu +

(
3

u
− u4 + u

2u̇2

)
u̇μu̇ +

(
3

u
+

u4 + u

2u̇2

)
μ = 0. (40)

The solution of equation (40) can be obtained by the characteristic method of Lagrange:

μ(x, u, u̇) = 2u̇

u6
M

(
x,

4u̇2 − 4u5 − u2

4u6

)
, (41)

where M is an arbitrary function of x and w = (4u̇2 − 4u5 − u2)/(4u6). Since μ must also
satisfy the first equation in (37),

Mx(x,w) = 0. (42)

This implies that M depends only on w and

μ(x, u, u̇) = 2u̇

u6
M

(
4u̇2 − 4u5 − u2

4u6

)
(43)

is an integrating factor of (38), where M is an arbitrary function.
In order to find a first integral I of (38) such that Iu̇ = μ, we must solve the system

that corresponds to (15). If, for example, we choose M(w) = w then we get the particular
integrating factor μ(x, u, u̇) = u̇(4u̇2 −4u5 −u2)/(2u12) and the corresponding system, (15),
becomes

Ix = 0, Iu = −
(
u5 + u2 − 6u̇2

)(
4u5 + u2 − 4u̇2

)
4u13

, Iu̇ = u̇(4u̇2 − 4u5 − u2)

2u12
.

(44)

By evaluating the corresponding line integral we get the general solution of (44) and a class
of first integrals of (38):

I (x, u, u̇) =
(
4u5 + u2 − 4u̇2

)2

32u12
+ C (C ∈ R). (45)

5. Integration by using two λ-symmetries

If v1 = ξ1∂x + η1∂u, v2 = ξ2∂x + η2∂u are two vector fields on M and λ1, λ2 are two functions
on M(1), then by (5),

v[λ1,(1)] = ξ1∂x + η1∂u + [(A + λ1)(Q1) + ξ1φ]∂u̇,

v[λ2,(1)] = ξ2∂x + η2∂u + [(A + λ2)(Q2) + ξ2φ]∂u̇,
(46)

where Qi = ηi − ξi u̇ for i = 1, 2.

We investigate the linear dependence of the set of vector fields {A, v[λ1,(1)], v[λ2,(1)]}. It
can be checked that∣∣∣∣∣∣

1 u̇ φ

ξ1 η1 (A + λ1)(Q1) + ξ1φ

ξ2 η2 (A + λ2)(Q2) + ξ2φ

∣∣∣∣∣∣ = Q1(A+λ2)(Q2)−Q2(A+λ1)(Q1). (47)

9
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This is a motivation to define an equivalence relationship between pairs of the form (v, λ).

We say that two pairs (v1, λ1) and (v2, λ2) are A-equivalent and we write (v1, λ1)
A∼ (v2, λ2)

if and only if

Q1(A + λ2)(Q2) − Q2(A + λ1)(Q1) = 0. (48)

It is clear that these two pairs are A-equivalent if and only if the set of vectors
{A, v[λ1,(1)], v[λ2,(1)]} is linearly dependent. In this case we can write

v
[λ1,(1)]
1 = 1

Q2

[∣∣∣∣ξ1 η1

ξ2 η2

∣∣∣∣A + Q1v
[λ2,(1)]
2

]
. (49)

Suppose that v1 is a λ1-symmetry, v2 is a λ2-symmetry and (v1, λ1)
A∼ (v2, λ2). If I is a

first integral of vector fields A and v
[λ2,(1)]
2 , then by (49) I is also a first integral of v

[λ1,(1)]
1 .

We now prove that, if (v1, λ1) is not A-equivalent to (v2, λ2), there exists a first integral
Ii of A and v

[λi ,(1)]
i that is not a first integral of v

[λj ,(1)]
j for i, j ∈ {1, 2} and i �= j . If there

is a nonconstant function I (x, u, u̇) such that A(I) = 0, v
[λ1,(1)]
1 (I ) = 0 and v

[λ2,(1)]
2 (I ) = 0,

then this linear system would have a nontrivial solution and the determinant (47) would be
identically null.

By using (49) it can be checked that for any pair (v1, λ1) the pair (v2, λ2) = (
∂u, λ1+ A(Q1)

Q1

)
is A-equivalent to (v1, λ1). This proves that in any equivalence class there is a unique pair,
(v, λ), such that v = ∂u. In particular two pairs of the form (∂u, λ1) and (∂u, λ2) are A-
equivalent if and only if λ1 = λ2. Therefore two different functions, λ1 and λ2, generate two
different A-equivalence classes.

As a consequence of these results, if we manage to obtain two different solutions λ1

and λ2 of equation (7), then v = ∂u is both a λ1-symmetry and a λ2-symmetry. Two
independent first integrals I1 and I2 of (1) can be obtained by solving the linear systems
{A(I1) = 0, v[λ1,(1)](I1) = 0} and {A(I2) = 0, v[λ2,(1)](I2) = 0}. This leads to the general
solution of (1). In the next section we apply these results to the Ermakov–Pinney equation.

6. Applications to the Ermakov–Pinney equation

We consider the Ermakov–Pinney equation

ü +
b2

4u3
+ a(x)u = 0, b > 0, (50)

where a(x) is an arbitrary function depending upon x.
The vector field v = ∂u is a λ-symmetry of equation (50) if and only if λ(x, u, u̇) is a

solution of the determining equation,

λx + u̇λu −
(

b2

4u3
+ a(x)u

)
λu̇ + λ2 = 3b2

4u4
− a(x), (51)

that corresponds to (7). In order to find some solutions of (51), we seek solutions that are
linear in u̇: λ(x, u, u̇) = α(x, u)u̇ + β(x, u). Then α and β must satisfy

αxu̇+βx +u̇(αuu̇+βu)−
(

b2

4u3
+ a(x)u

)
α+(αu̇+β)2− 3b2

4u4
+a(x) = 0. (52)

It is clear that the first member of (52) is a second-order polynomial in u̇ the coefficients of
which must be null. Therefore

αu + α2 = 0, (53)

10
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αx + βu + 2αβ = 0, (54)

βx −
(

b2

4u3
+ a(x)u

)
α + β2 − 3b2

4u4
+ a(x) = 0. (55)

It is clear that α(x, u) = 1/u is a particular solution of (53). For this α equation (54) becomes

βu + 2
1

u
β = 0. (56)

The general solution of (56) is of the form

β(x, u) = r(x)

u2
, (57)

where r(x) is an arbitrary function on x. This function β must satisfy (55) and therefore r(x)

must satisfy the equation:

r ′(x)

u2
−

(
b2

4u4
+ a(x)

)
+

r(x)2

u4
− 3b2

4u4
+ a(x) = 0. (58)

It is clear that r1(x) = b and r2(x) = −b are two different solutions of (58) which determine
the two following solutions of (51):

λ1(x, u, u̇) = 1

u
u̇ +

b

u2
, λ2(x, u, u̇) = 1

u
u̇ − b

u2
. (59)

Hence v = ∂u is both a λ1-symmetry and a λ2-symmetry of (50). Since λ1 �= λ2, the pairs
(v, λ1) and (v, λ2) are not A-equivalent. It can be checked that in any of the two equivalence
classes associated with these two pairs there are no Lie point symmetries.

We now calculate a first integral I (x, u, u̇) associated with the λ1-symmetry v = ∂u. This
requires one to solve the following system:

Ix + u̇φu −
(

b2

4u4
+ a(x)

)
Iu̇ = 0, (60)

Iu +

(
u̇

u
+

b

u2

)
Iu̇ = 0, (61)

that corresponds to (19).
The general solution of equation (61) is given by

I (x, u, u̇) = H

(
x,

u̇

u
+

b

2u2

)
, (62)

where H is an arbitrary function of x and w = u̇/u + b/(2u2). Since I must also satisfy (60),
H satisfies the equation

Hx(x,w) + (w2 − a(x))Hw(x,w) = 0. (63)

We assume that w0 = w0(x) is a known particular solution of the Riccati equation

ẇ + w2 + a(x) = 0. (64)

If w1(x) is such that ẇ1 = −2w0w1 and ẇ2 = −w1, then

H(x,w) = w1(x)

w − w0(x)
+ w2(x) (65)

is a solution of (63). Therefore a first integral of equation (50) is given by

I1(x, u, u̇) = 2w1(x)u2

2uu̇ + b − 2u2w0(x)
+ w2(x). (66)

11
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An integrating factor associated with I1 is given by

μ1(x, u, u̇) = − 4w1(x)u3

(2uu̇ + b − 2u2w0(x))2
. (67)

A similar procedure can be used to calculate a first integral associated with the λ2-
symmetry v = ∂u. In this case we would obtain

I2(x, u, u̇) = 2w1(x)u2

2uu̇ − b − 2u2w0(x)
+ w2(x). (68)

The corresponding integrating factor is

μ2(x, u, u̇) = − 4w1(x)u3

(2uu̇ − b − 2u2w0(x))2
. (69)

Since λ1 �= λ2, I1 and I2 are functionally independent first integrals of (50).
The general solution of (50) can be obtained by eliminating u from the system

I1(x, u, u̇) = C1, I2(x, u, u̇) = C2, (C1, C2 ∈ R). (70)

This implies that the solutions of (50) must satisfy

u2(C1 − C2)w1(x) + b(C1 − w2(x))(C2 − w2(x)) = 0. (71)

7. On λ-symmetries and other methods of construction of first integrals

7.1. The Prelle–Singer method

Prelle and Singer [34] introduced a method to construct integrating factors of first-order
ODEs. This method has been adapted and applied to second-order ODEs in [35] and has been
extended to nth-order ODEs in [36]. The main characteristics read as follows. They consider
the equation

ü = P(x, u, u̇)

Q(x, u, u̇)
, P,Q ∈ C[x, u, u̇], (72)

and the associated differential form
P

Q
dx − du̇. (73)

By adding a differential form of type S(x, u, u̇)(u̇ dx −du) to the differential form (73), where
S is an unknown function, they consider the differential form(

P

Q
+ Su̇

)
dx − [Sdu + du̇]. (74)

The extended Prelle–Singer method tries to find a function S such that the differential form
(74) is proportional to the differential form dI = Ix dx + Iu du + Iu̇ du̇, for some function
I (x, u, u̇). This means that there exists some function R such that

dI = R

[(
P

Q
+ Su̇

)
dx − (Sdu + du̇)

]
. (75)

The existence of the functions S, I and R satisfying (75) implies that

Ix = R

(
P

Q
+ u̇S

)
, Iu = −RS, Iu̇ = −R. (76)

The compatibility conditions for system (76) imply

A(S) = −φu + Sφu̇ + S2, A(R) = −R(S + φu̇), Rx = Ru̇S + RSu̇, (77)

12
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where φ = P/Q and A is the operator associated with equation (73). The first equation in
(77) says that v = ∂u is a λ-symmetry for λ = −S. By writing the second and third equations
of (77) in terms of λ we obtain

Rx + u̇Ru + φRu̇ = R(λ − φu̇), Ru + λRu̇ + Rλu̇ = 0. (78)

When one sets μ = −R, this system is equivalent to system (21). If λ and μ (or R and S) are
known, then the system (76) is equivalent to system (15).

This reveals a role of λ = −S on the integration of equation (73): if we add −λ(u̇ dx−du)

to the differential form φdx −du̇ (i.e., the differential form (73)), then the resulting differential
form

φdx − du̇ − λ(u̇ dx − du)

admits an integrating factor μ.
In [36] several interesting examples are considered to apply the generalized Prelle–Singer

method. It must be mentioned that the functions S that correspond to these examples follow
from Lie point symmetries of the equations, i.e., S = −A(Q)/Q, where Q is the characteristic
of some Lie point symmetry of the equation:

(1) For the harmonic oscillator equation,

ü = −u, (79)

in [36] the function S1 = u/u̇ is considered. This function corresponds to the Lie point
symmetry v1 = ∂x . A second function S2, which leads to an independent first integral of
(79), is given by S2 = tan x. This second function corresponds to the Lie point symmetry
v2 = cos x∂u. The two Lie symmetries v1 and v2 are in different equivalence classes
because

Q1A(Q2) − Q2A(Q1) = Q1Q2(−S2 + S1) �= 0. (80)

(2) In the study of a relativistic fluid sphere, Buchdahl [38] obtained the equation

uü − 3u̇2 − x−1uu̇ = 0. (81)

This equation admits the Lie point symmetry v1 = (1/x)∂x . The corresponding function
S1 is

S1 = −A(Q1)

Q1
= −3u̇

u
, (82)

which also appears in [36]. Other Lie point symmetries of equation (81) are v2 = x∂x

and v3 = (1/(u2x))∂x . The corresponding characteristics are Q2 = −xu̇ and
Q3 = −u̇/(u2x). For these characteristics we have

A(Q2)

Q2
= 3u̇

u
+

2

x
= −S2. (83)

A(Q3)

Q3
= u̇

u
= −S3. (84)

It should be mentioned that function S3 was obtained in [39] by using ad hoc methods and
not as a consequence of a general procedure. It can be checked that the pairs (v1,−S1),

(v2,−S2) and (v3,−S3) are in different equivalence classes and therefore any two of these
three pairs can be used to obtain the general solution of (81).

13
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7.2. The variational derivative and integrating factors

The classical approach for obtaining the determining equations for integrating factors of
equation (1) is, in short, as follows. If μ is an integrating factor of (1), then the function
θ(x, u, u̇) = μ(x, u, u̇)(ü − φ(x, u, u̇)) must be a total derivative and therefore its variational
derivative is null, i.e., θ is an invariant of the (truncated) Euler operator

E = ∂u − Dx∂u̇ + D2
x∂ü. (85)

Since we can write

Dx = A + (ü − φ)∂u̇, (86)

it is easy to check that

E(θ) = ü[μu + [A(μ) + μφu̇]u̇] + [A[A(μ) + μφu̇] − μφu − φ(μu + [A(μ) + μφu̇]u̇)]. (87)

The classical necessary and sufficient conditions for μ be an integrating factor of (1) are the
equations

μu + [A(μ) + μφu̇]u̇ = 0 (88)

A[A(μ) + μφu̇] − μφu − φ(μu + [A(μ) + μφu̇]u̇) = 0. (89)

These are the determining equations that appear, for instance, in [1] or in [2].
Equations (88) and (89) can directly be obtained without the use of variational derivatives

as a consequence of compatibility conditions. If we write system (15) in terms of I and μ by
using λ = [A(μ) + μφu̇]/μ, we obtain the system

Ix = [A(μ) + μφu̇]u̇ − φμ, Iu = −[A(μ) + μφu̇], Iu̇ = μ. (90)

The compatibility condition (Iu̇)u = (Iu)u̇ gives

(A(μ) + μφu̇)u̇ + μu = 0. (91)

This equation is the same as (23) and (88).
If we use the compatibility condition (Iu)x = (Ix)u, we obtain

[A(μ) + μφu̇]uu̇ − φuμ − φμu + [A(μ) + μφu̇]x = 0. (92)

By adding φ[A(μ) + μφu̇]u̇ to both sides of (92) we obtain

A[A(μ) + μφu̇] − μφu − φ[(A(μ) + μφu̇)u̇ + μu] = 0. (93)

This is equation (89). By (91) the coefficient of φ in equation (93) is null. Therefore system
(88) and (89) is equivalent to the system

μu + [A(μ) + μφu̇]u̇ = 0, A[A(μ) + μφu̇] − μφu = 0. (94)

It must observed that for obtaining these equations we have not used, explicitly, variational
principles.

We now show the role of λ-symmetries in this context. If we set λμ = A(μ) + μφu̇, then
A(μ) = (λ − φu̇)μ and

A[A(μ) + μφu̇] = A(λμ) = A(λ)μ + λA(μ) = [A(λ) + λ2 − λφu̇]μ. (95)

Therefore in terms of μ and λ = A(μ)/μ + φu̇,

E(θ) = (ü − φ)[μu + [A(μ) + μφu̇]u̇] + μ[A(λ) + λ2 − λφu̇ − φu]. (96)

It must be observed that the determining equation (7) for λ-symmetries is A(λ)+λ2−λφu̇−φu =
0, the first member of which is the coefficient of μ in equation (96).

Theorem 5 could directly be derived from (96). In fact, if μ is an integrating factor of (1),
then E(θ) = 0 and therefore μ satisfies the first equation in (94) and (96) implies that v = ∂u

is a λ-symmetry of (1) for λ = A(μ)/μ + φu̇. Conversely, if μ satisfies the first equation in
(94) and ∂u is a λ-symmetry, then (96) implies that μ is an integrating factor of (1).

Our next example illustrates the way λ-symmetries help to find integrating factors of an
equation.

14
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7.2.1. Painlevé XIV equation

ü − u̇2

x
+ u̇

(
−uq(x) − s(x)

u

)
+ s ′(x) − q ′(x)u2 = 0. (97)

It can be checked that equation (97) has no Lie point symmetries and hence cannot be integrated
by the Lie method of reduction.

To calculate an integrating factor by the method based on variational derivatives one has
to find particular solutions of the following system of determining equations

2μ + 2μu + 2
(
qu2 + 2u̇ + s

)
μu̇ + uμxu̇ + uu̇μuu̇ + (q ′u3 + u̇qu2 − s ′u + u̇2 + u̇s)μu̇u̇ = 0,

(98)

− μ(q ′u3 − s ′u + u̇2) + (qu3 + 2uu̇ + su)μx + (u̇2u − q ′u4 + s ′u2)μu

+ (q ′′u4 + 3u̇q ′u3 + u̇2qu2 − s ′′u2 + u̇s ′u − u̇3 − u̇2s)μu̇

+ u2μxx + 2u2u̇μxu + (q ′u4 + u̇qu3 − s ′u2 + u̇2u + u̇su)μxu̇

+ u̇u(u̇u + q ′u3 + u̇qu2 − s ′u + u̇2 + u̇s)μuu̇ = 0. (99)

Ibragimov ([1], p 241) has considered a particular case of this equation (q(t) = 0, s(t) =
t2 + t) and has found an integrating factor of the equation by using an specific ansatz to solve
system (98) and (99). This particular case also appears in [7]. Nucci [40] has used a method
inspired by the Jacobi last multiplier for another particular case (q(t) = 1, s(t) = t) to find a
first integral of Riccati type.

To obtain the general solution of system (98) and (99) by standard methods seems a
quite difficult task. We now try to seek a λ-symmetry of the equation. Since φ is a
quadratic polynomial in u̇, the special form of the determining equation (7) suggests to
seek particular solutions of the form λ(x, u, u̇) = α(x, u)u̇ + β(x, u). The corresponding
determining equations for α and β are

(α2 + αu)u
2 − αu + 1 = 0, (100)

(2αβ − q + βu + αx)u
2 − 2βu + s = 0, (101)

αq ′u3 − (βq + 2q ′)u2 + (β2 − αs ′ + βx)u − βs = 0. (102)

It is clear that α(x, u) = 1
u

is a particular solution of equation (100). Equation (101) becomes

(βu − q) u2 + s = 0, (103)

the general solution of which is of the form β(x, u) = uq(x) + s(x)

u
+ c1(x), for some arbitrary

function c1(x). It is easy to check that equation (102) is satisfied for c1(x) = 0. Hence v = ∂u

is a λ-symmetry of (97) for λ = u̇
u

+ uq(x) + s(x)

u
. By corollary 6 any particular solution μ of

the first-order linear system of PDEs

u̇μ + (q ′u3 + u̇qu2 − s ′u + u̇2 + u̇s)μu̇ + u(u̇μu + μx) = 0,

μ + (qu2 + u̇ + s)μu̇ + uμu = 0
(104)

is an integrating factor of (97). The general solution of equation (104) can be obtained by the
characteristic method of the Lagrange: a family of integrating factors of (97) is given by

μ(x, u, u̇) = 1

u
M

(
u̇ − q(x)u2 + s(x)

u

)
. (105)
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8. Conclusions

This paper explores the use of λ-symmetries in the investigation of the first integrals and
integrating factors of a given second-order ODE. When a λ-symmetry of the equation is
known, several methods are presented to obtain the associated first integrals or integrating
factors; in particular the associated integrating factors can be found by means of a coupled
first-order linear system of PDEs, instead of a second-order linear system of PDEs. When two
nonequivalent λ-symmetries of the equation are known, an algorithm to find two functionally
independent first integrals of the equation is presented. In this paper other known methods
to find first integrals and integrating factors are considered: methods based on variational
derivatives or extensions of the Prelle–Singer method. The results considered in this paper
cover and complete these known methods. Several applications to ODEs that appear in the
investigation of relevant equations of mathematical physics are also considered.
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